page 16

Simplifying radicals: A very common radical expression is a square root. One way to think of a square root is the number that will multiply by itself to create a desired value. For example: $\sqrt{2}$ is the number that will multiply by itself to equal 2. And in like manner $\sqrt{16}$ is the number that will multiply by itself to equal 16. In this case the value is 4 because $4 \times 4 = 16$. (When the square root of a perfect square number is taken you get a nice whole number value. Otherwise an irrational number is

$\sqrt{25-13} = \sqrt{12} = -$	$\sqrt{4 \cdot 3} = 2\sqrt{3}$ Answer: $2\sqrt{3}$	
#7 – 9: Simplify the	following. Show your work.	
7) $\sqrt{100-36}$	8) $\sqrt{50-5}$	9) $\sqrt{46-10}$
V64	V45_	436
197	19.15	16
	315	

Perfect Multiplication Table										45		
X	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20		28	32	36	40	44	48
5	5	10	15	20	25	30	35	40_	45	50	55	60
6	6	12	18	24	30	36	42	48-	34	60	66	72
7	7	14	21	28	35	42	49	56	8	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72.	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

HOMEWORK:

		I can factor quadratic expressions	5.2A #1 – 33 odd (P-9)	0	⊜	8
		I can solve quadratic equations by factoring	5.2B #1 - 9 (P-11) 5.2B #10-17 (P-12)	· ©	⊖	8
	5.2		5.2C #1 – 6 (P-13)	0	⊖	8
1/30	-	I can simplify radical expressions	5.2D #1, 8 (P-15)	0	⊖	⊗